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The distribution of the partition function of the Hopfield
model with finite number of patterns
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Limburgs Universitair Centrum, Departement WNI, Universitaire Campus, B-3590 Diepenbeek,
Belgium

Received 29 September 1995, in final form 28 March 1996

Abstract. We derive the leading term in the large-N asymptotic expansion of the partition
function of the Hopfield model with finite number of patterns. We show that this leading-order
term is deterministic in the high-temperature region. In the low-temperature region and at the
critical point it is random with the distribution governed byχ2, normal, or iterated exponential
distributions.

1. Introduction

Disordered systems of statistical mechanics are often defined in terms of random
HamiltoniansHN(sN ; ξK(ω)), wheresN = {si}Ni=1 is a configuration of spins andξK(ω) ≡
{ξi(ω)}i∈K is a set of random parameters defined on some probability space(�, F , P ). The
corresponding partition functions

ZN ≡
∑

s1,s2,...,sN

exp[−βHN(sN ; ξK(ω))]

are random functions with (as a rule) non-degenerate distributions. The free energy per spin

FN(β) = − 1

βN
logZN

is a random function with a nondegenerate distribution as well. However, asN → ∞
the sequenceFN(β) (as a rule) exhibits a self-averaging property, that is, the sequence of
the corresponding distributions converges to a degenerate one in the thermodynamic limit
[3, 8, 9, 12]. In this sense the limiting free energyf (β) = limN→∞ FN(β) is non-random.
Moreover, the limiting free energy and the thermodynamic limit of the mean free energy
coincide

f (β) = − lim
N→∞

1

βN
E(logZN).

All these facts may create the impression that the distributions of (finite volume) partition
functions are of no significance for the thermodynamic properties of disordered systems,
especially due to the (unfortunately) rather widespread belief that all thermodynamic
observables can be derived from the free energy by differentiation. However, as suggested
by exactly solvable models (simplest mean field models [2] and disordered spherical models),

† Present address: Dublin Institute for Advanced Studies, School of Theoretical Physics, 10 Burlington Road,
Dublin 4, Ireland. E-mail address: patrick@stp.dias.ie

0305-4470/96/143911+12$19.50c© 1996 IOP Publishing Ltd 3911



3912 A E Patrick

certain thermodynamic observables, like the magnetization, do not possess the self-averaging
property in multiphase regions of phase diagrams. Therefore, knowledge of the limiting free
energy is not sufficient for calculation of thermodynamic observables, and the distribution
of the partition function is of significant importance for the derivation of distributions of
non-self-averaging observables [2].

Another reason to study the distributions of random partition functions is the widespread
application of the replica method. The starting point of the replica method is an attempt
to obtain a generic expression for the integer moments of a partition function. If the
generic integer moment is successfully computed, the noninteger moments obtained by an
analytical continuation can provide very useful information. Knowledge of some general
properties of the distribution of the partition function may help to find the correct analytical
continuation. Unfortunately, as a rule, it is impossible to obtain an explicit expression for
the generic integer moment of the partition function. However, calculation of the first few
integer moments of the partition function is often possible and still may provide useful
information on the thermodynamic properties of the model if we know in advance how
randomness enters the expression for the partition function and if we have control over the
corresponding large deviation probabilities.

Guided by analogy with finite-size scaling theory one can guess the following asymptotic
expression for the partition function

ZN = exp(NfN(β) + NρrN) (1)

wherefN(β) is the ‘non-random’ contribution to the free energy, limN→∞ fN(β) = f (β);
ρ < 1, and rN is a sequence of random variables (the random part of the free energy)

such that limN→∞ rN
d→ r, wherer is a random variable with a proper, non-degenerate

distribution. Of course, theNρ term may be distorted by logN -type corrections. The
exponentρ in equation (1) is expected to be the same for large classes of models. Also, the
limiting random variabler should have its distribution confined to a rather restricted class.

In the present paper we calculate the distribution of the partition function corresponding
to the Hamiltonian

HN = − 1

2N

N∑
i 6=j

M∑
p=1

ξ
(p)

i ξ
(p)

j sisj − ε

N∑
i=1

ξ
(q)

i si (2)

where{ξ (p)

i = ±1}N M
i=1,p=1 is a sequence of independent and identically distributed random

variables (i.i.d.r.v.) with the shared distribution Pr[ξ
(p)

i = ±1] = 1
2, the variables

{si = ±1}Ni=1 are Ising spins, andM is kept fixed in the thermodynamic limit (N → ∞).
The Hamiltonian (2) was used (apparently) for the first time by Pastur and Figotin [8]

to construct an exactly solvable model of a spin glass. They found an exact expression
for the free energy corresponding to that Hamiltonian in the thermodynamic limit using the
approximating Hamiltonian method. Later on the Hamiltonian (2) was used by Hopfield [6]
in a model of a neural network exhibiting associative memory which since then has attracted
much attention especially in the case whenM grows linearly withN . In the framework of
the Hopfield model the subsequences{ξ (p)

i }Ni=1, p = 1, 2, . . . , M represent patterns which
are supposed to be stored by the network.

The term−ε
∑N

i=1 ξ
(q)

i si in equation (2) corresponds to an external field favouring one
of the equilibrium states (in the spin-glass terminology) or a nominated pattern (in the neural
network interpretation). Such a field, however, is usually considered as rather artificial. We
use it mainly in order to take the limitε → 0 after N → ∞. This procedure enables
one to obtain (possibly metastable) states (that is, probability measures) corresponding to an
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intermediate stage of the time evolution (t � 1, butt � τ ∗, whereτ ∗ is a characteristic time
of intervalley transitions for, for example, Glauber dynamics) generated by the Hamiltonian
(2) with ε = 0. The states obtained in the thermodynamic limit withε set to 0 beforehand
correspond to a rough time-scale description of the evolution (t � τ ∗). Although for
mean-field models, like (2), the characteristic timeτ ∗ is very large (grows exponentially
with N ) consideration of the time-scalest � τ ∗ is not totally pointless. Indeed, for finite-
dimensional models the height of the intervalley barriers is known to have a behaviour
qualitatively different from the mean-field one.

It is appropriate to point out here that the overlap parameters

m
(p)

N = 1

N

N∑
j=1

ξ
(p)

j sj p = 1, 2, . . . , M

in the Hopfield model,even with a finite number of patterns (the Hamiltonian (2) with
ε = 0), are non-self-averaging observables. Like the magnetization of the Curie–
Weiss model in random field [2] the overlap parameters are random variables with non-
degenerate distributions even in the limitN → ∞. In fact, limN→∞ m

(p)

N exists only in
distribution. Therefore, for a fixed realization of patterns{ξ (p)

i }∞i=1, p = 1, 2, . . . , M the
limit lim N→∞ m

(p)

N simply does not exists (with probability one). As a consequence, any
approach based on a reckless averaging is bound to produce, strictly speaking, wrong results
for the Hopfield and similar models. The best one can hope for when applying, for example,
the replica method to the model (2) in the caseε = 0 is to obtain, say, for the overlap
parameterm(q) the results corresponding to taking limitε ↓ 0 (after the limitN → ∞)
in the expression for the overlap parameterm(q)(ε). Indeed, the overlap parameterm

(q)

N (ε)

in the model (2) is a self-averaging observable for anyε 6= 0. The results of the papers
[9, 10] suggest, however, that in the case of the Hopfield model with an extensively large
number of patterns it is very unreasonable to expect restoration of self-averaging by the
field ε

∑N
j=1 ξ

(q)

j sj with arbitrarily smallε.
In order to keep the size of the paper small and to avoid repetition of (by now) well

known arguments the author did not make an attempt to write a rigorous paper. However,
the necessary polishing could have been done (by losing the advantages of brevity) and the
interested readers can get an idea of how the missing proofs can be accomplished from [4]
and references therein.

2. Distribution of the partition function

We consider first the Hamiltonian (2) withε = 0. The partition function of the model is
then given by

ZN =
∑

s1,...,sN

exp

[
β

N

N∑
i<j

M∑
p=1

ξ
(p)

i ξ
(p)

j sisj

]

= e− 1
2 Mβ

∑
s1,...,sN

exp

[
β

2N

M∑
p=1

( N∑
i=1

ξ
(p)

i si

)2]
. (3)

Using M times the well known identity

e
1
2 ay2 = 1√

2π

∫ ∞

−∞
dx e− 1

2 x2+√
ayx (4)
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equation (3) can be rewritten in a form convenient for application of the Laplace method

ZNe
1
2 Mβ =

∑
s1,...,sN

∫ ∞

−∞
· · ·
∫ ∞

−∞

M∏
k=1

dxk√
2π

exp

[
−1

2

M∑
p=1

x2
p +

√
β

N

M∑
p=1

xp

N∑
i=1

ξ
(p)

i si

]

= 2N

(
βN

2π

)M/2 ∫ ∞

−∞
· · ·
∫ ∞

−∞

M∏
k=1

dxk e−N8N (x1,x2,...,xM) (5)

where

8N(x) ≡ 8N(x1, . . . , xM) = 1

2
β

M∑
p=1

x2
p − 1

N

N∑
i=1

log cosh

(
β

M∑
p=1

xpξ
(p)

i

)
. (6)

To evaluate the multiple integral in (5) using the Laplace method one has to find the
dominant minima of the function8N(x). As usual it is convenient to consider the cases
β < βc (the high-temperature region),β > βc (the low-temperature region), andβ = βc

separately (βc = 1 for the Hopfield model with finite number of patterns).

2.1. The low-temperature region

Consider the function

8(x) ≡ 8(x1, . . . , xM) = 1

2
β

M∑
p=1

x2
p − 1

2M

∑
σ1,...,σM=±1

log cosh

(
β

M∑
p=1

σpxp

)
(7)

and note that8N(x) → 8(x) as N → ∞ (with probability one). The function8(x)

attains its global minimum at the 2M points±x∗
p = {±x∗δp,k}Mk=1, p = 1, 2, . . . , M; where

x∗ is a minimum point of the function

8(x) = 1
2βx2 − log coshβx

andδp,k is the Kronecker delta. The stationary points of the function8(x) are solutions of
x = tanhβx, among which the minimum points can be identified as the stable fixed points
of the recurrent relation

x(n + 1) = tanhβx(n) (8)

which is simply an algorithm for solving the the equationx = tanhβx by iterations.
The stationary points of the function8N(x1, . . . , xM) are the solutions of the system

xp = 1

N

N∑
i=1

ξ
(p)

i tanh

(
β

M∑
f =1

xf ξ
(f )

i

)
p = 1, 2, . . . , M. (9)

The minima of8N(x1, . . . , xM) are the stable fixed points of the system of recurrent relations

xp(n + 1) = 1

N

N∑
i=1

ξ
(p)

i tanh

(
β

M∑
f =1

xf (n)ξ
(f )

i

)
p = 1, 2, . . . , M (10)

which, similar to (8), is an algorithm for solving the system (9) by iterations.
In general, it is not an easy problem to find the initial conditions for the recurrent

relations (10) which are in the basins of attraction of the fixed points corresponding to the
dominant minima of the function8N(x). Fortunately, in our case (finiteM) the choice is
easy. Consider 2M balls S(±x∗

p) ⊂ RM centred at±x∗
p, p = 1, 2, . . . , M, which have

radius r (independent ofN ) sufficiently small to contain only one point of the minima
of the function8(x)—the one in the centre of a ball. IfN is large enough the system
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(9) has exactly one solutionx∗
p,N = (x

(p)

1,N , x
(p)

2,N , . . . , x
(p)

M,N) in each of the ballsS(x∗
p) and

limN→∞ x∗
p,N = x∗

p. This statement is proved sometimes by reference to the generalization
of the Hurwitz theorem to functions ofM complex variables. A more direct proof, based on
the observation that the first and second partial derivatives of the function8N(x) converge
to those of8(x), is also possible [2]. Thus one can take as the initial conditions for
the system of recurrent relations (10) the points±x∗

p, p = 1, 2, . . . , M, then solving the
recurrent relation (10) will provide us with 2M fixed points±x∗

p,N , p = 1, 2, . . . , M. The
only point which will need to be checked after that, to make sure that we have found the
right minima, is that limN→∞ x∗

p,N = x∗
p. Typically, for a givenN , the points of only one

pair ±x∗
p,N correspond to the global minima of the function8N(x). Nevertheless, all the

points ±x∗
p,N , p = 1, 2, . . . , M contribute to the main asymptotics of the integral in (5)

and any other minima of the function8N(x) are irrelevant.
Choosing(x1(0), x2(0), . . . , xM(0)) = x∗

q one obtains

xp(1) = 1

N

N∑
j=1

ξ
(q)

j ξ
(p)

j x∗

for p = 1, 2, . . . , M. The second iteration yields

xp(2) = 1

N

N∑
j=1

ξ
(p)

j tanh

(
β

M∑
f =1

xf (1)ξ
(f )

j

)

= tanh[βxq(1)]
1

N

N∑
j=1

ξ
(q)

j ξ
(p)

j + β

cosh2[βxq(1)]

M∑
f (6=q)

xf (1)
1

N

N∑
j=1

ξ
(f )

j ξ
(p)

j

+ · · ·
where we have expanded tanh(x) in the Taylor series around the pointx = βxq(1). Thus

xp(2) = x∗
1

N

N∑
j=1

ξ
(q)

j ξ
(p)

j + β

cosh2(βx∗)
xp(1) + O(N−1)

for p 6= q, and

xq(2) = tanh[βxq(1)] + β

cosh2[βxq(1)]

M∑
f (6=q)

xf (1)
1

N

N∑
j=1

ξ
(f )

j ξ
(q)

j + O(N−3/2).

On making further iterations in (10) it becomes clear that the generic expressions forxp(n)

are given by

xp(n + 1) = x∗
1

N

N∑
j=1

ξ
(q)

j ξ
(p)

j + β

cosh2 βx∗
xp(n) + O(N−1) (11)

if p 6= q, and

xq(n + 1) = tanh[βxq(n)] + β

cosh2[βxq(n)]

∑
f (6=q)

xf (n)
1

N

N∑
j=1

ξ
(f )

j ξ
(q)

j + O(N−3/2). (12)

Remark. If aN and b are proper random variables then the asymptotic relationaN =
Nγ b + o(Nγ ) means that limN→∞ N−γ aN

d= b. The asymptotic relationaN = O(Nγ )

means that limN→∞ N−γ aN is a proper random variable.
Note that in (11) and (12) we have written explicitly the terms of the order O(N−1/2)

in the expression forxp(n) and the terms of the order O(1) and O(N−1) in the expression
for xq(n) (there are no terms∼aN−1/2 in the latter case). This choice is motivated by
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two reasons. First, the evolution of the explicitly written terms is closed. Neither O(N−1)

terms in xp(n), nor O(N−3/2) terms in xq(n) interfere in the evolution of the explicitly
written terms. Second, only the explicitly written terms make non-vanishing contributions to
N8N(x1, . . . , xM) in the limit N → ∞. Moreover, the contributions toN8N(x1, . . . , xM)

from the terms of the order O(N−1/2) in xp(n) and from the terms of the order O(N−1) in
xq(n) have the same order of magnitude.

To find the fixed point of the recurrent relations (11) and (12) note that the largeN

asymptotic expansion ofxp(n) are given by

xp(n) = 1√
N

δp(n) + o(N−1/2) (13)

for p 6= q, and

xq(n) = x∗ + 1

N
δq(n) + o(N−1) (14)

whereδq(n) are random variables independent ofN distributions.
Substituting the expansions (13) and (14) in (11) and (12) one obtains the following

recurrent relations forδp(n):

δp(n + 1) = x∗Nq,p(0; 1) + β

cosh2(βx∗)
δp(n) (15)

if p 6= q, and

δq(n + 1) = β

cosh2(βx∗)

[
δq(n) +

M∑
f (6=q)

δf (n)Nf,q(0; 1)

]
. (16)

The coordinates of the fixed point of these recurrent relation are given by

δ∗
p = x∗

1 − β/ cosh2(βx∗)
Nq,p(0; 1)

for p 6= q, and

δ∗
q = 1

[1 − β/ cosh2(βx∗)]2

βx∗
cosh2(βx∗)

M∑
f (6=q)

N 2
f,q(0; 1)

where

Nq,p(0; 1)
d= lim

N→∞
1√
N

N∑
j=1

ξ
(p)

j ξ
(q)

j

are random variables with the standard normal distribution. Therefore, the initial condition
x∗

q is in the basin of attraction of the fixed pointx∗
k,N = (x

(q)

1 , x
(q)

2 , . . . , x
(q)

M ) with the
coordinates

x(q)
p = 1√

N

x∗
1 − β/ cosh2(βx∗)

Nq,p(0; 1) + o

(
1√
N

)
for p 6= q, and

x(q)
q = x∗ + N−1 1

[1 − β/cosh2(βx∗)]2

βx∗
cosh2(βx∗)

M∑
f (6=q)

N 2
f,q(0; 1) + o(N−1).

Taking into account the above expressions forx
(q)
p , p = 1, 2, . . . , M; one obtains

8(x∗
q,N ) = 1

2
βx2

∗ − log cosh(βx∗) − βx2
∗N

−1

2(1 − β + βx2∗)

M∑
f (6=q)

N 2
f,q(0; 1) + o(N−1)
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asN → ∞. Application of the Laplace method to the integral (5) (in 2M points of minima
±x∗

q,N , q = 1, 2, . . . , M) yields

ZNe
1
2 βM = 2N+1(1 − β + βx2

∗)
−M/2 exp[−N( 1

2βx2
∗ − log cosh(βx∗))]

×
M∑

q=1

exp

[
βx2

∗
2(1 − β + βx2∗)

M∑
f (6=q)

N 2
f,q(0; 1)

]
(1 + o(1)). (17)

The random variables

νq ≡
M∑

f (6=q)

N 2
f,q(0; 1) q = 1, 2, . . . , M

have χ2 distribution with M − 1 degrees of freedom, that is, their common distribution
density is given by

fn(x) =


1

2n/20(n/2)
xn/2−1e−x/2 if x > 0

0 if x 6 0
(18)

wheren = M − 1, see figure 2. The random variablesνq are dependent sinceNp,q(0; 1) ≡
Nq,p(0; 1). Therefore, (apparently) no simple expression for the distribution of the partition
function for arbitraryM can be found and the usefulness of equation (17) deteriorates very
rapidly asM increases. However, in the limitM → ∞ the distribution ofZN simplifies.
Indeed, one has

lim
M→∞

N (M)
q ≡ lim

M→∞
1√

M − 1

M∑
f (6=q)

[N 2
f,q(0; 1) − 1]

d= Nq(0; 1) (19)

as M → ∞, where the random variablesNq(0; 1) have the standard normal distribution
(see figure 2 for illustration). Note that the random variables{N (M)

q }Mq=1 are not independent
but exchangeable, for instance,

E(N (M)
k N (M)

j ) = 1

M − 1

∑
f (6=k)

∑
l(6=j)

E[(N 2
f,k(0; 1) − 1)(N 2

l,j (0; 1) − 1)] = 2

M − 1

for k 6= j . According to equation (17)

ZNe
1
2 βM = 2N+1(1 − β + βx2

∗)
−M/2 exp[−N( 1

2βx2
∗ − log cosh(βx∗))]

× exp

[
βx2

∗(M − 1)

2(1 − β + βx2∗)

]
RM (20)

where

RM ≡
M∑

q=1

exp

[
βx2

∗
2(1 − β + βx2∗)

√
M − 1N (M)

q

]
is the ‘random’ part of the partition function. To find the distribution ofRM for largeM

we use the double inequality

max
k=1,2,...,M

N (M)
k 6 1

γ
√

M − 1
log

[ M∑
k=1

exp
(
γ
√

M − 1N (M)
k

) ]
6 max

k=1,2,...,M
N (M)

k + logM

γ
√

M − 1
. (21)
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For large M the joint distribution density of the random variables{N (M)
q }Mq=1, is

approximated by its quadratic (Gaussian) part

g(x1, x2, . . . , xM) =
√

detĈ

(2π)M/2
exp

[
− M − 1

2(M − 3)

M∑
j=1

x2
j + 1

3(M − 3)

( M∑
j=1

xj

)2]

where Ĉ is the covariance matrix of the random variables{N (M)
q }Mq=1, and detĈ =

1
3(M−1

M−3)M−1. Using the identity (4) one obtains

Pr
[

max
k=1,...,M

N (M)
k 6 x

]
= Pr[N (M)

1 6 x, . . . ,N (M)
M 6 x]

≈
√

detĈ√
2π

∫ ∞

−∞
dy e− 1

2 y2

{∫ x

−∞

dτ√
2π

exp

[
− 1

2

M − 1

M − 3
τ 2 +

√
2τy√

3(M − 3)

]}M

= 1√
6π

√
M − 3

M − 1

∫ ∞

−∞
dy exp

[
−y2

6

(
1 − 2

M − 1

)]
IM(x, y)

where

I (x, y) ≡
∫ b(x,y)

−∞

dτ√
2π

e− 1
2 τ 2

and

b(x, y) = x

√
1 + 2

M − 3
− y

√
2

3(M − 1)
.

Using a well known result of probability theory one has fory = 0

I n

(√
2 logn − log(4π logn)

2
√

2 logn
+ χ√

2 logn
, 0

)
→ exp(−e−χ )

asn → ∞. The same is obviously true for anyy. Hence

Pr

[
max

k=1,...,M
N (M)

k 6
√

2 logM − log(4π logM)

2
√

2 logM
+ χ√

2 logM

]
→ exp(−e−χ )

asM → ∞. Thus,

RM = exp

{
βx2

∗
2(1 − β + βx2∗)

[√
2M logM − 1

2

√
M

2 logM
log(4π logM) +

√
M

2 logM
r

]

+ o

(√
M

2 logM

)}
(22)

wherer is a random variable with the iterated exponential distribution

Pr[r 6 x] = exp(−e−x).

The main features of the iterated exponential distribution can be seen in figure 1.
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Figure 1. The iterated exponential distributionF(x) = exp(−e−x) and its densityf (x) =
exp(−e−x − x).

Figure 2. The χ2 distribution densities with 7, 15 and 25 degrees of freedom.

2.2. The high-temperature region

For β ∈ (0; βc), whereβc = 1, the function8(x) given by equation (7) has a unique
minimum at the pointx = (0, . . . , 0). Indeed, the stationary points of8(x) are solutions
of

xp = 1

2M

∑
σ1,...,σM=±1

tanh

[
β

(
xp + σp

M∑
f (6=p)

σf xf

)]
p = 1, 2, . . . , M.

This system has an obvious solutionx = (0, . . . , 0). Using the elementary inequality
1
2[tanhβ(x − y) + tanhβ(x + y)] 6 tanhβx for x > 0

one has

1

2M

∑
σ1,...,σM=±1

tanh

[
β

(
σp

M∑
f (6=p)

σf xf + xp

)]
6 tanhβxp

for xp > 0. It follows then that(0, . . . , 0) is the only minimum of8(x1, . . . , xM) for
β ∈ (0; 1) since tanhβx < x for β ∈ (0; 1) andx > 0.

Since the first partial derivatives of8N(x) converge to the first partial derivatives of
8(x) all stationary points of the function8N(x) are in an arbitrarily small vicinity of the
point (0, . . . , 0) whenN is large enough. The function8(x) is convex and its matrix of
second derivatives is negatively defined in a neighbourhood of the point(0, . . . , 0). The
same is true for the functions8N(x), whenN is large enough, since their second partial
derivatives converge to the second partial derivatives of8(x). Therefore the function
8N(x) has a unique minimum at the point(0, . . . , 0) whenN is large enough.
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Application of the Laplace method for the evaluation of the integral in equation (5) yields
a deterministic leading-order term in the asymptotic expansion of the partition function. It
is given by

ZN = 2N(1 − β)−M/2e−Mβ/2(1 + O(N−1)) (23)

for β ∈ (0; 1). Obviously, the partition function (3) still has a non-degenerate distribution
in the high-temperature region (with the exception of the caseM = 1), however, all
‘randomness’ is now hidden in the O(N−1) term.

Note that non-trivial disordered systems, like the Sherrington–Kirkpatrick model and
the Hopfield model with macroscopic number of patterns, do not share this property.
Namely, the main asymptotics of the corresponding partition functions have non-degenerate
distributions even in the high temperature regions [1, 11]. The partition function of the
random energy model has, however, deterministic leading-order term in the high-temperature
region, see [5].

2.3. The critical point

At the critical pointβ = 1 the function8(x) still has the unique minimum at the point
(0, . . . , 0). However, all its second partial derivatives vanish at that point and the matrix
of the second derivatives of the function8N(x) may not be negatively defined at the the
point (0, . . . , 0) depending on the realization of randomness. Therefore the exact locations
of the stationary points of the function8N(x) and even their number are random forβ = 1.
Keeping only the relevant terms one has

8N(x1; . . . ; xM) ≈ − 1

N

M∑
p<f

N∑
j=1

ξ
(p)

j ξ
(f )

j xpxf + 1

12

M∑
p=1

x4
p + 1

2

M∑
p<f

x2
px2

f .

It is apparently impossible to find explicit expressions for the stationary points. However,
it is clear that the coordinates of the stationary points of the function8N(x) scale with
N as xp = N−1/4χp, whereχp are random variables with non-degenerate distributions.
Application of the Laplace method shows that the leading-order term in the large-N

asymptotic expansion of the partition function at the critical point has a non-degenerate
distribution.

To complete our investigation of the partition function corresponding to the Hamiltonian
(2) we now consider the caseε > 0. In this case one can still easily obtain an integral
representation for the partition function analogous to equation (5). In fact one simply has
to replace the function8N(x) in (5) by

FN(x1, . . . , xM) = 1

2
β

M∑
p=1

x2
p − 1

N

N∑
i=1

log cosh

[
β

( M∑
p(6=q)

xpξ
(p)

i + (xq + ε)ξ
(q)

i

)]
.

For anyε > 0 only the minimumx∗
q,N close to the pointx∗

q = {δl,qx∗(ε)}Ml=1, wherex∗(ε)
is the maximal solution ofx = tanh[β(x + ε)], makes contribution to the main asymptotics
of the partition function. Repeating the arguments which we used to obtain equation (20)
one arrives at

ZNe
1
2 βM = 2N(1 − β + βx2

∗(ε))
−M/2 exp[−N( 1

2βx2
∗(ε) − log cosh(βx∗(ε)))]

× exp

[
βx2

∗(ε)
2(1 − β + βx2∗(ε))

M∑
f (6=q)

N 2
f,q(0; 1) + o(1)

]
. (24)
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Thus the distribution of the main asymptotic of the partition function in the caseε 6= 0
is governed by theχ2 distribution with M − 1 degrees of freedom (main features of
the χ2 distributions are illustrated in figure 2). For largeM the (properly rescaled)χ2

distributions withM − 1 degrees of freedom approach the normal distribution (see equation
(19)), therefore, in the caseε 6= 0 the largeM asymptotics of the random part of the
partition function has distribution governed by the normal distribution.

As one could have expected the limitε ↓ 0 in (24) does not yield (20).

3. Concluding remarks

In the present paper we found the probability distribution of the main asymptotics of the
partition function of the Hopfield model with a finite number of patterns (for all temperatures
except the critical point). The main computational steps which allow one to obtain explicit
expressions are application of the Laplace method for the evaluation of the multiple integral
in equationuation (5) and solution of the equations for stationary points (9). It is of course
interesting to know if one can obtain similar results for Hopfield models with infinite (in
the thermodynamic limit) number of patterns. Recent results for Hopfield models with
the number of patternsM = o(N) [7, 12], suggest that the formal application of the
Laplace method still yields the correct expression for the leading-order term in the large-N

asymptotic expansion of the corresponding partition functions. The explicit expressions for
the location of the stationary points can still be found by the method of the present paper
if M = o(N). Therefore, all the results of the present paper can be rederived in the case
M = o(N). It is clear, however, that they coincide with theM → ∞ asymptotics of the
results found in the present paper. That is, the formal substitutionM → Nγ in (22) and
(23) yields the expressions valid in the caseM = Nγ , γ ∈ (0; 1).

When M = αN the Laplace method needs some modification since the major
contribution to the main asymptotics of the partition function does not necessarily come from
the global minima of the function8N(x). The curvature of this function at a stationary point
becomes important whenM = αN . What becomes a really difficult problem is the location
of the stationary points. The method of the present paper obviously cannot be applied for
this problem in the caseM = αN . However, it can be used to find an expansion in powers
of α for the corresponding stationary points (which is, possibly, only an asymptotic series).
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